Flow of sand and a variable mass Atwood machine
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We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of
granular media, such as sand, in real time. The measurements allow us to elucidate the
phenomenological laws that govern the flow of granular media through an aperture. We use this
apparatus to construct a variable mass system and study the motion of an Atwood machine with one
weight changing in time in a controlled manner. The study illustrates Newton’s second law for
variable mass systems and lets us investigate the dependence of the flow rate on acceleration.
© 2003 American Association of Physics Teachers.
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[. INTRODUCTION Section Il is devoted to the experimental study of an At-
wood machine with a variable mass. An approximate solu-
Although the formal treatment of variable mass systems ision of the equation of motion is found analytically and com-
discussed in a number of books on mechahicsitil re-  pared to experimental data. This device also provides us with
cently, there have been relatively few undergraduate levedn accelerated system that lets us investigate the dependence
experiments involving a variable mas®. However, the of the flow rate on acceleration.
study of these systems is an interesting challenge for students
and enhances their understanding of the laws of dynamics.
The study of variable mass systems goes back to at IeaQt EXPERIMENTAL CHARACTERIZATION OF
the 16th century. At that time Galileo had already designed:l-uxES

an ingenious device and may have been one of the first sci- oy jiquids, the time rate of the mass discharged through
entists to study variable mass problefns. an orifice depends on the height of the column and thus is

Granular materials, of which sand is one example, may b&§me dependent. In contrast, we will show that the flow rate
defined as a large conglomeration of macroscopic particleg,t sang is constant in time and does not depend on its height.
Despite their apparent simplicity, they behave differently 14 characterize the sand flow rate, we hung a plastic bottle
than other forms of matter such as solids and fIS#8&n  fijeq with sand upside down. We drilled openings of differ-
overview of their surprising features and behavior may b&nt sizes and shapes in several lids and used them to study
found in Ref. 8. Two reasons for the application of granulare fiow as a function of the size and shape of the opening.
materials to variable mass systems are that handling sand y§,¢ hottle was hung from a force sensor connected to a data
easier than handling a fluid and the constant flow rate o cquisition system associated with a compugse Fig. 1
sand, a feature we will explore in Sec. II. This property of |, this way, the apparatus measures the mass as a function of
the flow allows for a simpler interpretation of the experimen-me We obtained the mass flow rate from the slope of the
tal feS“'iES- straight line fitted to the data.

Yersel has suggested that the flow rate of a granular ma- e experimental arrangement shown in Fig. 1 was also
terial of densityp, flowing through an opening of ared sqq o study the flow rate of liquids. As can be seen in Fig.
under the influence of an effective gravitational figjdis 2, the flow rate of water depends, as expected, on the differ-

given by ence in pressure on the two sides of the opeRiagd is time
dm dependent. For this experiment the sand must be dry, because
T kpg*2AS4 (1)  asand castle does not flow in the same way as grains of sand

in an hourglass. Common sand, previously sifted, was used.

wherek is a constant. The dependence of the flow rate on thdleasurements of the grains using a microscope showed the
diameter of circular apertures was measured in Ref. 6 and farains to be about 100m across.
this geometry the experimental results agree with (&j. Figure 3 shows that the flow rate of sand is constant and

We will study the flow of sand through an opening using aincreases monotonically with the area of the opening. If we
new device that improves and simplifies the static methoglot the constant flow rate= —dm/dt, for each opening of
used in Ref. 6 and is simple to implement in an undergraduareaA on a logarithmic scale for both variables, the relation
ate physics laboratory. As we will see, this method lets udetweenc and A is a straight line(see Fig. 4. Hence, our
measure the flow rate in real time, making it simple to verifyresults indicate that the phenomenological dependenae of
if the flux of granular material is constant in time. on A is given by
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Fig. 3. The mass as a function of time for circular openings of dianizter
The error in the measurement of the diameters is 0.1 mm. In all cases, the

Fig. 1. Schematic of the experimental setup for measuring the flow of sangow of sand is constant.

through different size openings. The bottle is hung from a force sensor that
is connected to a data acquisition system associated with a computer. Lids

with different size openings are used to study the dependence of the floy| AN ATWOOD MACHINE WITH A VARIABLE

t the di i f th ings.
rate on the dimensions of the openings MASS

Atwood’s machine is a textbook example of the applica-
c=pbAY @) tion of Newton's second law. A delightful demonstration
’ based on the principles of the Atwood machine is the experi-
whereb is a constant that can be obtained from the experiment of the “cup and the key.” This experiment is bound to
mental data. The value of the exponentvas found to be amuse, surprise, and challenge kindergarten children as well
1.25+0.05. For circular openings, we can writecD25,  as physics professot§: Take a heavy object such as a cup,
whereD is the diameter of the circular hole. This result is in attach it to one end of a meter long string, and attach a light
agreement with Ref. 6. object such as a key to the other end of the string. Take a
Curiosity may have killed the cat, but it drives science, soPencil and hold it horizontally with a firm grip. Let the cup
we wondered how the shape of the opening affects the floW?ang just below the pencil and drape the string around the
We took more lids and cut different shaped openifsgiare ~ Pencil. With your other hand, hold the key so that most of the
and triangulax. Not surprisingly, the flow was still constant. string is horizontal. Can you predict what happens if you
What did come as a surprise was that the flow followed theelease the key?
same systematic trend as did the circular openings. From the The Atwood machine consists of two masseg,andm,,
plot in Fig. 4, we see that the new data points fall on theconnected by a string running over two identical pulleys that
same functional form as that of the circular holes. This sug<an be regarded as a single pulley of effective nmgsand
gests that as long as the characteristic length of the openinadiusR, (see Fig. 5. We slightly changed this configuration
is much larger than the size of the grains, the relevant papy allowing one of the masses to vary with time. This system
rameter that determines the flux is the area of the opening.s interesting because the underlying physics of the system is
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Fig. 2. Comparison of the flow rate of water versus sand. The flow of waterfFig. 4. Relation between the flow and the area of the orifice. The triangular
in g/s, clearly decreases with the height of the column, while sand does noaind the square shaped points correspond to similarly shaped openings.
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Fig. 5. Schematic of the experimental setup for a variable mass Atwood 0 0.02 0.04 0.06 0.08 0.1
machine. The photogate, associated with the left pulley, was connected t( (m1-m2)g (N)
the computer to collect data. Sand comes from the bottom of the left-hand
container. Fig. 6. Determination of the friction force for the Atwood machine with a

constant mass.

transparent and the equations of motion can be solved ana- ¢? of ol

lytically, making it possible to understand the nature of New- — ~—7~2 =t +2 X—x_12" (4)
ton’s second law when applied to variable mass systems. : bt Pt

This arrangement is not new, and the Atwood machine The uncertaintiesr, and o, depend on the quality of our
with a changing mass has been studied by several autffors. measurements, and for a given experimental setup are ap-
Some authors have used a container with water that dripsroximately constant. Therefore, E@) indicates that if we
through a holé. Because the flux of water changes in time, take the limit of making the measurement as often as we can,
the assumption that the flow rate was constant is far fromhat is, we take;—t;_;—0, the error will dominate our es-
accurat€’. Other authors have used a container with sand fotimate of the derivative. For this reason, it is preferable to
the variable mas$? but the functional form for the flow rate compare our model without differentiating the data. Thus, to
was assumed but not independently verified in the same eXtetermine the flow rate, we fitted a straight line through suc-

periment. Moreover, the effects of the friction force and thecessive time intervals and extracted the slope from the fit to
moment of inertia of the pulleys were disregarded. We haveyrovide an estimate of the derivative.

included these effects and tested our assumptions regarding
the variation of the flow rate with the acceleration. This ap-p  Constant mass
proach lets us check the validity of all our assumptions in the
same experiment. The traditional approach to constant mass systems in-

Our variable mass system consists of the same invertegolves drawing free body diagrams for each pamt ( m,,
plastic bottle filled with sand, and a circular opening in theand the pulley.>* We will use a qualitative approach and
screw-on lid as was used in the first experiment. We measurebtain the same result. The total inertia of the system is made
the position of one of the massegt), using a smart pulley up of the two masses plus a contribution from the pulley. The
(a pulley with spokesand a photogate connected to a com-force that drives the system is the difference in weight be-
puter. The computer provides the time interval between contweenm; andm,. We also consider a constant friction force
secutive passes of the spokes. By measuring the diameter bfdue to the pulley opposing the motion. The equation of
the pulley and the number of spokes, it is straightforward tomotion for the system is
obtainx(t) andv(t). There is a minor uncertainty in deter-
mining the distance traveled by the system at the instant that
the pulley reverses direction. This uncertainty produces a
kink in the plot ofv(t) at this instant. where | is the pulley's moment of inertia. If we take

In principle, it would be possible to obtain the acceleration=( 5 m, R? and define an effective maskl=m;+m,
of the system as well, but, in practice, it is not that simple to_, 0.5m,, we see that Atwood’s machine is analogous to a
d|fferent|afte expenmenFaI data. Let us assume that we Warétystem of massV subject to a force rf;—my)g—F. In
to determine the velocity; from the experimentally mea- inar words,
sured values of the position and timet; at two consecutive
steps(the subindexi enumerates the sequence of discrete M a=(m;—my)g—F. ©6)

measurements of position and tim&hen By measuring the acceleration for differen andm, and
plotting Ma as a function of §n;—m,), we obtain a straight

= _ 3) line (see Fig. 6, independently verifying the hypothesis that

ti—ti— F is constant. From the slope of Fig. 6, we obtain the value

of g, which is consistent with the known local acceleration of

We suppose that our data has erratsand o, for the mea- gravity. The intersection of the fitted line of Fig. 6 with the

surement of position and time, respectively. If we use thevertical axis yieldsF =(3.3+0.1)x 103 N. To extract the

conventional procedures for error propagatiéme have acceleration, we plotted the velocity as a function of time by

a=(m;—m,)g—F, ©)

|
my+my+ =5
1 2 R2

X X
vi=———
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fitting a straight line through the data. Similarly, it would be We define the parameters
possible to plot the positiorx(t), versus time and obtain the
acceleration by fitting a second-order polynomial. This pro-
cedure avoids differentiating the experimental data twice. and

My =My (t=0), mMype=m;o—Mmy, (14

MOZM(tZO)=m1’0+m2+l/2rnp, (15)

. . ) and combine Eqg11) and(13):
Newton’s second law for one-dimensional motion can be

B. Discharging mass

written as a(t)= dv (M0~ Cot) 9—F 16
dp dt (Mg—Cght)
FTERE (7)  We have defined
whereP is the total momentum of the system aRd is the A=|1- a( 1— E)) (17)
net force acting on it. Because the mass of the system varies g/

in time, we must be very careful when we referRan Eg.
(7), because it includes the momentum of the dischargeg
mass. Let us consider the variation of momentum between
andt+ At. At time t the effective mas$/ of the system is
moving with a velocityv, and the momentum i®=Muv.
After At, the system has discharged a mas4(<0) and its
velocity has changed bgwv. If the sand leaves the system

We can see that becauselepends linearly o, it is not
ossible to integrate Eq16) by simple methods. However,
we can approximat@/g in Eq. (17) by its average value
calculated using Eq11), and replacen, by its mean value,
(my(t))~m,; o2, and disregard the friction force. Therefore,
using the parametefd, andm, ,, introduced previously, we

with a velocity u relative to the container, the total momen- obtain
tum att+ At is My g—m, 2my+3m,
A~l-a|ll-—F—"|=1-a . (18
P(t+At)=(M+AM)(v+Av)—(v+Uu)AM. (8) Mo—3myg Mo—3My
We assume that the initial relative velocityof the sand Equation(16) can now be integrated analytically yielding
leaving the container is zeraiE0). The change in the total an expression for both the velocity and the position of one of
momentum to first order becomes the masses:
AP(t)=P(t+At)—P(t) t (Mg—AMmy0-g+\F
oty =o(t=0y+ Ly MoTAM209
=(M+AM)(v+Av)—vAM—vM. (9 A Coh
Therefore, in the limit ofAt—0, we have Coht
XIn| 1— —/, (19
dp_ . do 0 Mo
Gr=MO 5 (10 o
o . X(t)=x(t=0)+v(t=0)t+ ——
which is similar to the expression for the case of constant 2\
mass, byt V\.nth.the important difference that the mkﬁst) (Mo— My 09+ A\F Colt
now varies in time. If we allow mas®, to change in time, +My >3 1—
Eq. (6) becomes CoA My
M(t)a=(my(t)—my)g—F, (1D X|In[ 1— Colt) 1} (20)
with M (t) =my(t) +m,+1/2m, . Mo

Because the geometry of the experimental setup is thEquations(19) and (20) can be compared directly with the
same as that used previously for the case of constant masgsults of our measurements. From the comparison we can
we expect the frictiorF not to change. We expect the flow assess the validity of our model and obtain the valuey,of
rate to change with acceleration. Indeed if the container werghe only free parameter.
in free fall, no sand would leave the system. According to
Ref. 6, the flux will vary with the vertical acceleration as  C- Results

@ Figures 7 and 8 show examples of measurements from our

c(a)=co(1+a/g)%, (12) varia?ble mass experiment conﬁ)pared to the theoretical curves
wherec is the flux rate - dm/dt) at the acceleration, and  obtained from Eqs(19) and (20) for different values ofa.
Co is the flux when no acceleration is present. The signFrom this comparison, our experimental results are consis-
convention for the acceleration is such that if the system igent with the valuex=0.5. In fact, with a limit of confidence
in free fall,a= —g. The dependence of the flux on accelera-of 95%, «=0.5+0.1, which agrees with the prediction of
tion in Eq. (12) shows the expected behavior fa=0 and  EQq. (1). The uncertainty inx can be reduced by experiment-
a=—g. By dimensional analysis, Ref. 6 concluded that iNng with an increased output flux at higher accelerations,

in Eq. (12) is equal tok; we will test this conclusion using Pecause at larger fluxes, the predictions of E#8) and(20)
our data. are more sensitive to small variations of the paramates

If a<g, we can use the approximation Figs. 7 and 8 clearly show. Figures 7 and 8 indicate that our
results forx(t) andv(t), given by Eqs(19) and(20), are in
(13) complete agreement with the experimental results, even for
' values ofa~g.

a
c(a)=~cq| 1+ a§
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Fig. 7. Experimental result for a small flow rate,= 1.7 g/s. The circles in Time (s)

the upper panel represent the measured values of the velocity as a function ) ] )
of time. The dot-dashed line represents the acceleration obtained using Efig. 8. Experimental result for a large flow rat=296 g/s. The circles in
(16) with a:%. In the lower panel the triangular symbols represent the the upper panel represent the measured values of velocity as a function of

measured values of the position as a function of time. In both panels, thgme' The dot-dashed line represents the acceleration obtained usifit5Eq.

. 1 .
heavy continuous line represents the prediction of the model, (E§sand with a= 3. In the lower panel the triangular symbols represent the measured

(19) for a=0.5. The lines corresponding to the prediction of the model for values of the position as a function of time. In both panels, the heavy

=1 anda=0 barely differ from the case @f=0.5. The parameters of the continuous line represents the prediction of the model, E.and (19),
system weren;,;=58.9 g,m,=55.25 g, andn,=11g. for «=0.5. The dot-dashed line corresponds to the prediction of the model

for a=1. The dashed line corresponds to the prediction of the model for
a=0, that is, no dependence of the flow rate with acceleration. The kink
observed near the maximum xft) is an artifact due to the uncertainty in
IV. CONCLUSIONS determining the distance traveled by the system at the instant at which the
pulley reverses its direction of motion. The parameters of the system were
We designed a device to measure the flow of sand througin,,=317 g,m,=20g, andm,=11g.
an opening. Our measurements show that the flow of sand is
constant and depends only on the area of the orifice. The
shape of the orifice does not affect the flux as long as thACKNOWLEDGMENTS
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